19 resultados para aromatic alcohols

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terpene alcohols (−)-menthol and [(1S)-endo]-(−)-borneol react with SiCl4 in the presence of base to give (MenO)3SiCl (1) and (BorO)3SiCl (2) in high yields. Hydrolysis of 1 yields (MenO)3SiOH (4) and (MenO)4Si (3). Hydrolysis of 2 yields only (BorO)3SiOH (5). The crystal structures of 3 and 5 are reported.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A testing facility for combustion of biomass and sampling of emissions has been established at Deakin University. In this pilot project using this facility, four kinds of locally grown wood species were burned and the particle emissions sampled and analysed for Polycyclic Aromatic Hydrocarbons (PAHs). The selected wood species covering pine, red gum, yellow box and sugar gum, are the most popular domestic fuel wood in Australia. Particulate matter emissions from burning of each load of wood were sampled from the flue using a standard stack emission sampling train. The particle-laden filters were extracted and the .extract analysed to determine PAH concentrations by Gas Chromatographyl Mass Spectrometer (Gc/MS). The sampling was conducted under two different burning conditions with the air inlet of the combustion chamber fully open and with it half open. A suite of 15 PAHs, ranging from naphthalene (C IOHB) to dibenzolahlanthracene (C12H14), were selected for analysis. PAH profiles for the four wood species, under the different burning regimes, have been generated. Some preliminary emission factors for the different wood species have been derived as microgram of summed PAHs (rPAHs) emittedlkilogram of wood burned. Total Particulate Matter (TPM) emission factors were also obtained from gravimetric measurement of the sample filter before and after the combustion. Based on these emission factors, pine displayed the highest level of rPAHs emitted from the combustion of the four wood species, with sugar gum showing the lowest level of rPAHs emission. Emission factors associated with the slow burning condition clearly showed higher l:PAH levels compared to the faster burning condition. During the faster burning condition, red gum and pine show a higher percentage of rPAH to TPM than sugar gum or yellow box. Under the slower burning. the l:PAHlTPM ratio in every case was greater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four kinds of woods used for residential heating in Australia were selected and burned under two burning conditions in a domestic wood heater installed in a laboratory. The selected wood species included pine (Pinus radiata), red gum (Eucalyptus camaldulensis), sugar gum (Eucalyptus cladocalyx) and yellow box (Eucalyptus melliodora). The two different burning conditions represented fast burning and slow burning, with the air inlet of the combustion chamber respectively ‘full open’ and ‘half open’. By sampling and analysing particulate and gaseous emissions from the burning of each load of wood under defined experimental conditions, PAHs emissions and their profiles in the particulate and gaseous phases were obtained. 16 species out of the 18 selected PAHs were detected. Of these, seven species were detected in the gaseous phase and most were lower molecular weight compounds. Similarly, more than 10 species of PAHs were detected in the particulate phase and these were mostly heavier molecular weight compounds. Under both burning conditions, emission levels for total PAHs and total genotoxic PAHs were the highest for pine and lowest for sugar gum, with red gum being the second highest, followed by yellow box. Using the specific sampling method, gaseous PAHs accounted for above 90% mass fraction of total PAHs in comparison to particulate PAHs (10%). The majority of the genotoxic PAHs were present in the particulate phase. PAHs emission levels in slow burning conditions were generally higher than those in fast burning conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four kinds of Australian local wood species were burned in a domestic wood heater installed in a laboratory. The selected wood species include pine, red gum, yellow box and sugar gum, that are the most popular domestic fuel wood in Australia. Particulate matter emissions from burning of each load of wood were sampled isokinetically on filter media from the flue by standard stack emission sampling train. The particle laden filters then went for Gas Chromatography/ Mass Spectrometer (GC/MS) analysis to determine polycyclic aromatic hydrocarbons (PAHs) concentrations. The sampling was conducted under two different burning conditions – air inlet of the combustion chamber fully open and half open. Approximately 15 types of PAHs were detected. Emission factors were derived as microgram of PAHs /kg of wood burned. Total particulate emission factors were also obtained from gravimetric measurement before and after the sampling. PAH emission profiles for four species were generated from the results. Comparisons of emission factors have been conducted among different species of wood, as well as under different burning conditions, ie. fast burning and slowing burning. According to the derived emission factors, pine displayed the highest level of PAHs among the four species, followed by red gum and yellow box, whereas sugar gum showed the lowest level of PAHs. Emission factors were compared between each type of wood under two different burning conditions, the slow burning condition, which was air inlet half open, clearly showed higher PAH levels compared to the fast burning condition. Total PAH fractions on particulate matter were calculated and compared among wood types under two burning conditions. During the fast burning condition, red gum and pine have the higher percentage of PAH to total particulate matter emission than sugar gum and yellow box. When changed to slow burning, the PAH fraction on particulate matter are all increased with sugar gum having the largest increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel polyamide nanocomposite fibres have been produced by compounding semi aromatic Poly (m-xylene adipamide) (MXD6) and organophilic Montmorillonite (MMT). Partially orientated fibres (POF) of MXD6 nanocomposite were obtained by melt spinning on a multifilament fibre extrusion system at three different speeds. The effect of the drawing velocity
on the mechanical properties of the filaments has been determined. Tensile measurements indicated that the introduction of the nanoparticies by melt intercalation improves the tenacity and toughness of the resulting polyamide fibres. The microstructure of the nanocomposites was examined by X-ray diffraction and Transmission Electron Microscope (TEM) and shown to
be an exfoliated disordered structure. The thermal stability of MXD6 nanocomposites was analysed by thermo gravimetric analysis (TGA) suggesting stabilisation of the clay and the polymer systems above 450°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are known or suspected carcinogens or mutagens. Bioremediation has been used as a general way to eliminate them from the contaminated sites or aquifers, but their biodegradation is rather limited due to their low bioavailability because of their sparingly soluble nature. Surfactant-mediated biodegradation is a promising alternative. The presence of surfactants can increase the solubility of PAHs and hence potentially increase their bioavailability. However, inconclusive results have been reported on the effects of surfactant on the biodegradation of PAHs. In this work, surfactant-mediated biodegradation of PAHs is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraction and preconcentration of the model polycyclic aromatic hydrocarbon (PAH), phenanthrene, in aqueous solutions by two different kinds of nonionic ethoxylated alcohols, Tergitol 15-S-7 and Neodol 25-7, as extractants was studied at ambient temperature (22°C). Both surfactants have almost the same numbers of hydrocarbons and ethylene-oxide (EO) units, but differ in the location of the alcohols. Neodol 25-7 is a primary alcohol, while Tergitol 15-S-7 is a secondary one. The extraction process is based on the clouding phenomena of these two nonionic surfactants. Addition of sodium sulfate or sodium phosphate could decrease the cloud point temperatures of the surfactant solutions below the ambient temperatures, so that the cloud-point extraction process could be facilitated. Increasing the salt concentration or decreasing the surfactant concentration could improve the preconcentration factor, which is attributable to the decrease in the volume of surfactant-rich phase. Consequently, the recovery efficiency higher than 96% was achieved for phenanthrene in aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel but simple cloud-point extraction (CPE) process is developed to preconcentrate the trace of selected polycyclic aromatic hydrocarbons (PAHs) with the use of the readily biodegradable nonionic surfactant Tergitol 15-S-7 as extractant. The concentrations of PAHs, mixtures of naphthalene and phenanthrene as well as pyrene, in the spiked samples were determined with the new CPE process at ambient temperature (23 °C) followed by high performance liquid chromatography (HPLC) with fluorescence detection. More than 80% of phenanthrene and pyrene, respectively, and 96% of naphthalene initially present in the aqueous solutions with concentrations near or below their aqueous solubilities were recovered using this new CPE process. Importantly Tergitol 15-S-7 does not give any fluorometric signal to interfere with fluorescence detection of PAHs in the UV range. No special washing step is, thus, required to remove surfactant before HPLC analyses. Different experimental conditions were studied. The optimum conditions for the preconcentration and determi nation of these selected PAHs at ambient temperature have been established as the following:  (1) 3 wt % surfactant; (2) addition of 0.5 M Na2SO4; (3) 10 min for equilibration time; and (4) 3000 rpm for centrifugal speed with duration of 10 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retention characteristics of phenyl type stationary phases for reversed phase high performance liquid chromatography are still largely unknown. This paper explores the retention process of these types of stationary phases by examining the retention behaviour of linear PAHs and n-alkylbenzenes on a series of propyl phenyl stationary phases that have changes in their ligand density (1.23, 1.31, 1.97, 2.50 μmol m−2). The aromatic and methylene selectivities increased with increasing ligand density until a point where a plateau was observed, overall the propyl phenyl phases had a higher degree of aromatic selectivity than methylene selectivity indicating that these columns are suitable for separations involving aromatic compounds. Also, retention characteristics relating to the size of the solute molecule were observed to be influenced by the ligand density. It is likely that the changing retention characteristics are caused by the different topologies of the stationary phases at different ligand densities. At high ligand densities, the partition coefficient became constant.